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Bootstrap estimates of chaotic dynamics
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~Received 1 August 2000; published 18 June 2001!

Bootstrap sampling is a nonparametric method for estimating the standard error of a statistic. This paper
describes the application of bootstrap sampling to estimate the error in local linear approximations of the
dynamics on chaotic attractors reconstructed from time series measurements. We present an algorithm for
identifying influential points, i.e., observations with an especially large effect on a least-squares fit, and an
algorithm to estimate the standard error of regression coefficients obtained from total least squares. We also
consider the application of bootstrap methods to assess the uncertainty in Lyapunov exponent computations
from chaotic time series.
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I. INTRODUCTION

A primary goal of existing algorithms and software
analyze chaotic time series is to allow experimentalists
characterize their data using many of the same tools
theoreticians use to characterize their equations. Under
hypotheses, it is possible to embed the data to reconstru
attractor from a time series of measurements@1,2#. The em-
bedding can be used to generate piecewise linear approx
tions of the dynamics on the attractor. Usually, no analyti
form for the functionf(x) that maps a given pointx to its
observed image is available, but often it may be appro
mated asf(x)5Ax1b, where the matrixA and vectorb are
obtained by a linear least-squares computation using
points in a suitably small neighborhood ofx @3#. The ap-
proximations, in turn, can be used to estimate Lyapunov
ponents@4#, make short-term predictions@5#, or reduce the
noise in the observations@6#.

It is well known that such computations must be do
with care. There are several sources of systematic error
cluding a poor choice of time delay@7#; noise in the data,
which introduces a bias in ordinary least-squares estima
@8#; and a lack of observations@9#. Moreover, embeddings
can produce spurious Lyapunov exponents@10#. Neverthe-
less, with appropriate precautions, one can make piece
approximations of the dynamics and use them to estim
quantities like Lyapunov exponents. Yet a basic question
mains: how can one estimate the uncertainty in the appr
mations?

This paper describes several applications of a statis
method, calledbootstrap sampling, to quantify the uncer-
tainty in estimates of dynamical information from data. Se
tion II describes the bootstrap method. Section III outline
simple, effective, automatic algorithm that uses bootst
sampling to identify small sets of influential points in lea
squares estimates of the local dynamics on a reconstru
attractor.~A point x is influential if the regression coeffi
cients are especially sensitive to small changes in the c
dinates ofx.! Section IV shows how bootstrap sampling c
be used to estimate the variance in regression coeffici
computed from total least-squares methods~also called error-
in-variables methods!. Section V considers the inherent di
ficulties in devising confidence intervals for estimates
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Lyapunov exponents from embedded chaotic attractors
suggests a heuristic measure of the relative uncertainty u
bootstrap estimates of the standard error in one-step ex
sion rates.

II. BACKGROUND

Bootstrap estimates of the standard error. A typical prob-
lem in mathematical statistics is the estimation of some
rameteru5u(P) of a probability distributionP. Even if P is
known explicitly, formulas for the standard error~standard
deviation! of u are difficult to derive except in simple case
~e.g., whenu is the mean of the distribution!. Often,P is not
known explicitly but is taken as the empirical distributio
defined by a given set of observations. The bootstrap
computational procedure that provides reliable estimate
the standard error~se! of u, often denoted seu or s(u),
provided that the available data is a reasonable approxi
tion of the underlying probability distribution@11,12#.

Let x5(x1 ,x2 , . . . ,xn) be a collection ofn observations
that is drawn from an underlying probability distributionP
~that may or may not be known explicitly!. Let s(x) be a
statistic to estimate the parameteru5u(P). A bootstrap
sampleis a collectionx* consisting ofn data points drawn
independently from the original observations at random w
replacement and with probability 1/n. ~Each observation is
equally likely to be chosen, and a given observation may
chosen once, more than once, or not at all.! The quantity
u* 5s(x* ) is a bootstrap replicateof u.

The bootstrap algorithm for estimating the standard er
s(u) is straightforward. Using a random number genera
one generatesB bootstrap samplesxi* , each of which is used
to compute abootstrap replicateu i* 5s(xi* ), i 51, . . . ,B.
The bootstrap meanof u is the mean of the bootstrap repl
cates,

mB~u!5
1

B (
i 51

B

u i* . ~1!

The bootstrap standard errorof u is
©2001 The American Physical Society13-1
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sB~u!5F 1

B21 (
i 51

B

@u i* 2mB~u!#2G1/2

. ~2!

@Equations~1! and~2! are sometimes called thenonparamet-
ric bootstrap estimates of the mean and standard error
spectively, because they are based on the empirical distr
tion of the data.# The ideal bootstrap estimate ofs(u) is
limB→`sB(u). Values ofB between 25 and 200 usually yiel
satisfactory approximations ofs(u) for most statistics of
practical interest@11#.

Eckmann-Ruelle linearization. In a typical laboratory ex-
periment, a time series of observationst i , i 51,2, . . . is ob-
tained at equal intervalsDt. Under mild hypotheses@1,2#, an
attractor can be reconstructed by generating an approp
sequence of vectors from the time series. One pop
method is time-delay embedding, where one fixes the
bedding dimensionm and time delayt and forms vectors
xi5(t i ,t i 1t ,t i 12t , . . . ,t i 1(m21)t), i 51,2, . . . . ~Other ap-
proaches are also possible@1#.! Whatever the method used t
generate the vectorsxi , each vector is regarded as a functi
of the previous one in time order:xi 115f(xi).

Although f is not known in practice, Eckmann and Rue
@3# suggested a local linear approximation:

xi 115f~xi !'A ixi1bi , ~3!

where A i is an m3m matrix andbi is an m vector. ~The
subscript emphasizes the dependence ofA and b on xi .)
Equation~3! is theEckmann-Ruelle linearizationof f at xi .
Both A andb can be computed using linear least squares
sufficiently large number of observations can be found i
suitably small neighborhood ofxi . A collection of Eckmann-
Ruelle linearizations can be used to estimate the Lyapu
exponents of the attractor@4#; reduce the noise in the dat
@6#; make short-term predictions of the underlying chao
process@5,13#; or apply small controls to keep the dynami
near a given saddle orbit@14#.

III. INFLUENTIAL POINTS IN LINEAR LEAST SQUARES

An important question is how the estimates ofA and b
depend on the observations. Consider a distribution of po
like the one illustrated schematically in Fig. 1. The points
along two strips~manifolds! in the reconstructed attracto
One of them has a much larger natural measure than
other ~as suggested by the thicker band!. A small ball cen-
tered about one of the points encompasses a large numb
points along the more probable strip and, in this exam
only two points along the less probable strip. The dynam
maps the ball approximately into an ellipse after one ite
tion.

FIG. 1. A schematic illustration of influential points.
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The corresponding Eckmann-Ruelle linearization is a
32 matrix A that is computed from the data points with
the original ball and their corresponding images in the
lipse. The singular valuess1 and s2 of A determine the
lengths of the major and minor axes, respectively, of
ellipse @15#. In this example,s1 is determined from a large
number of data points, but to within the observational ac
racy, the value ofs2 is determined almost exclusively by th
two points on the less probable strip.~An example of this
situation in the He´non map is presented below.! Hence the
estimate ofs2 is particularly sensitive to small errors in th
measurement of these two points; they are calledinfluential
points for this reason.

An outlier is a point that is relatively distant from th
mean of the observations; outliers sometimes result fr
particularly large errors in measurement. An influential po
need not be distant from the mean, but small changes in
influential point have much bigger effects on the regress
function relative to small changes in the other observatio
However, an outlier need not be an influential point, and
influential point need not be an outlier@8#. Moreover, a small
subset of points may form an influential subset, as illustra
in Fig. 1.

Most statistics texts recommend a graphical analysis
the data when fitting a regression function, as the presenc
outliers and influential points often is evident from a plo
However, graphical analysis is practical only when there i
small number of independent variables and a small num
of regression functions to be fitted. Many heuristic statisti
methods, largely based on an analysis of residuals, have
proposed to identify influential points when graphical ana
sis is impractical@16#. One difficulty with the heuristic meth-
ods in the case of chaotic data analysis is that the points
the greatest influence on the Eckmann-Ruelle matrix n
not have large residuals.

The bootstrap is a useful way to identify subsets of infl
ential points when computing Eckmann-Ruelle linearizatio
of the local dynamics. Consider the situation in Fig. 2, whi
shows a set of points in a neighborhood of the He´non attrac-
tor and their corresponding images. The attractor is a tim
delay reconstruction, and in this case,

fS t i 21

t i
D 5S t i

1.42t i
210.3t i 21

D . ~4!

The neighborhood in Fig. 2~a! shows observations that lie i
one of two main bands; each band corresponds to clo
spaced pieces of the chaotic attractor. The dynam
squeezes the two bands closer together. The computed
mate

A5S 0 1

0.3009 20.9455D ~5!

is an accurate approximation of ‘‘true’’ Jacobian matrixDf
at the reference pointxref5(0.7864,0.4721). We generateB
5100 bootstrap samples and compute a bootstrap repli
A* from each. We apply Eq.~2! elementwise to obtain the
bootstrap standard error,
3-2
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BOOTSTRAP ESTIMATES OF CHAOTIC DYNAMICS PHYSICAL REVIEW E64 016213
s100~A!5S 0 0

0.1379 0.0920D .

The bootstrap mean and standard errors of the singular
ues ofA ares151.38960.036 ands250.23260.113. Simi-
larly, the bootstrap standard error of detA is about 28% of its
true value, 0.3.

The standard errors ins2 and detA are more than ten
times larger than those in typical neighborhoods on the
tractor@17#. They reflect the uncertainty in the local contra
tion rate due to the small number of points used to estim
it: there is an influential subset consisting of the two points
the upper right of Fig. 2~a!. Within the measurement accu
racy, all the information about the local contraction ra
comes from the two circled points. In bootstrap samp
where one or both points are included, the computed valu
A* is close to that in Eq.~5!. However, in bootstrap sample
where both points are omitted, typically

A* 'S 0 1

0.7432 20.6312D .

The omission of the points in the influential subset chan
the estimate ofA considerably, even though the means of t
observations are nearly identical.

The second derivative of the He´non map is constant, so

iDf~x!2Df~x* !i

ix2x* i
52.

FIG. 2. ~a! Observations in a typical neighborhood of the He´non
attractor, and~b! their images. The circles show an influential su
set.
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In contrast, the observations in this neighborhood yield v
ues of iA2A* i /im(x)2m(x* )i that are as large as 400
The presence of the influential subset implies that the co
puted approximation of the dynamics does not vary conti
ously with the observations.

Whenever exceptional estimates of the Eckmann-Ru
matrix are encountered, one can inspect the correspon
bootstrap samples to identify influential subsets of sm
numbers of points. Because each point in a bootstrap sam
of size n is chosen independently with probability 1/n, the
probability that a particular observationxj doesnot appear in
a given bootstrap sample is (121/n)n;1/e'0.37 for mod-
est values ofn. If two points form an influential subset, the
the probability that neither is chosen in a given bootst
sample is approximately 1/e2, or 14%. Hence a modest num
ber of bootstrap replicates is likely to make apparent
influence of the two points on the estimation ofA.

This observation underlies following algorithm to identi
influential points in an Eckmann-Ruelle linearization.

Algorithm I. Let a set of observationsS in a small neigh-
borhood on the attractor be given.

~1! GenerateB bootstrap samples fromS.
~2! From each sample, compute a bootstrap replicateA*

using linear least squares.
~3! Compute the bootstrap meanmB(A) and the bootstrap

standard errorsB(A).
~4! For each bootstrap replicateA* , determine whether

iA* 2mB(A)i>isB(A)i . ~The Frobenius norm@19# is suit-
able for this purpose, and it is less expensive to compute t
the spectral norm.!

~5! There arek>0 bootstrap replicates that satisfy th
criterion in step 4. Ifk.0 then letE be the subset ofSwhose
elements didnot appear in any of thek corresponding boot-
strap samples. Ifk50 then letE be the empty set.

Because the points inE do not appear in any bootstra
sample that yields an exceptional map,E may be an influen-
tial subset.~If E is empty, then there are no influential poin
by the criterion in step 4.! The probability that a noninfluen
tial point appears in any given exceptional sample~by the
criterion in step 4! is about 12e21 or 63%; hence ifB is too
small, then algorithm I may generate a setE that contains
many noninfluential observations. One useful heuristic is
chooseB so that if an influential subset does exist, then t
expected number of exceptional samples identified in ste
is at least 12. The probability that a noninfluential point a
pears in all 12 exceptional samples is (12e21)12'0.0041. If
S contains, say, 200 observations, then the expected num
of noninfluential points inE is less than 1. This heuristic ca
reliably identify any single influential point ifB>33; any
pair of influential points ifB>89; and any trio of influential
points if B>241.

What does one do with influential points? The answ
depends in part on the nature of the underlying data. If o
has data from a numerical simulation or other source
which the observational noise is negligible, then influent
points might as well be retained in the least-squares com
tation. If the noise is appreciable, then the presence of in
ential points means that at least some aspect of the estim
3-3
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ERIC J. KOSTELICH PHYSICAL REVIEW E 64 016213
dynamics relies on a small number of observations, and
is subject to a relatively large uncertainty. In the He´non ex-
ample above, it would be appropriate to discard the influ
tial points if noise were appreciable and compute the b
rank-1 approximation to the dynamics; this poses no d
culty for an application that seeks to estimate the larg
Lyapunov exponent.

The fractal structure of chaotic attractors and the la
variations in the natural measure throughout the attra
mean that influential points arise relatively frequently
practice. In addition, laboratory data often contain isola
‘‘glitches’’ that can be identified using bootstrap samplin
Algorithm I can be applied to any class of models for t
dynamics, such as higher-order Taylor polynomials@20# or
radial basis functions@21#. Although algorithm I requires
significant computational effort, modern computers make
implementation practical; local linear approximations to ea
point in a data set of 105 points can be computed in 10–6
min for embedding dimensions up to 6 or so.

IV. BOOTSTRAP ESTIMATES OF THE ERROR IN
TOTAL LEAST SQUARES

The presence of measurement noise complicates the
tistical estimation ofA and b even in the absence of influ
ential points. One difficulty is that the estimator for the c
efficients ofA is biased, and the size of the bias depends
the noise, not on the number of observations.Total least
squaresprovides an alternative approach that reduces
bias@22#; its use was suggested in Ref.@8# as a possible way
to enhance the accuracy of Lyapunov exponents comp
from Eckmann-Ruelle linearizations. Although the to
least-squares algorithm reduces the bias, the applicatio
total least squares to Eckmann-Ruelle linearization app
to give estimators with a significantly larger variance than
ordinary least squares.

In ordinary linear least squares, the observationsxi andyi
are assumed to satisfy relations of the form

yi5Ax i1b1ei , ~6!

i 51, . . . ,n, wherexi andyi arem vectors of observations,A
is anm3m matrix, and thee’s arem vectors of independent
random error terms of mean0 and common variance. All o
the error in the model~6! occurs in the measurement ofyi .

Without loss of generality, we may subtract off the me
of the observationsxi and yi and re-cast the least squar
problem in a matrix form as follows. LetY0 be then3m
matrix whosei th row is yi2m(y), and letX0 be then3m
matrix whosei th row isxi2m(x). Equation~6! is equivalent
to the overdetermined system

Y05X0AT. ~7!

~We assumen.m.! The ordinary least-squares algorithm a
tempts to find a matrixŶ0 that minimizesiY02Ŷ0iF subject
to the constraint that each column ofŶ0 is in the column
space ofX0 @19#. Once such aŶ0 is found, then any matrix
ÂT that satisfiesŶ05X0ÂT is called an ordinary least-
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squaressolution of Eq.~7! @23#. The Eckmann-Ruelle linear
ization ~3! is obtained by settingA5(ÂT)T and b5m(y)
2Am(x). One can regard the ordinary least-squares
proach as finding the smallest adjustment to the observa
matrix Y so that Eq.~7! has a solution.

It can be shown that the matrix

ÂT5~X0
TX0!21X0

TY0 ~8!

provides a least-squares solution of Eq.~7! @18#. The model
~6! implies thatY0, and henceÂT, is a random matrix. The
estimator~8! is said to be anunbiasedestimator ofAT: the
expectation ofÂT is the transpose of the underlying ‘‘true
matrix A in the model~6!.

Now consider the time-delay reconstruction of an attr
tor from a chaotic time series whose values are contamin
with measurement noise.~Assume that the errors are inde
pendent and identically distributed with mean0 and a com-
mon covariance matrix that is diagonal.! In this case, there is
error in all the observations, so the underlying model in
Eckmann-Ruelle linearization~3! is

yi5A~xi1di !1b1ei , ~9!

where thed ’s ande’s are vectors of independent and ide
tically distributed measurement errors. In this case, the e
mator ~8! is a biasedestimator ofAT. The size of the bias
depends on the covariance matrix of the error terms an
independent of the number of observations@23–25#.

The total least-squares algorithm adjusts both sets of
servations and finds parametersA andb so that the relation
y5Ax1b holds exactly for each adjusted observation. L
@X0 ;Y0# denote the augmentedn32m observation matrix;
the first m elements of thei th row arexi2m(x) and the
secondm elements areyi2m(y). The total least-square
problem seeks to find a new augmented matrix@X̂0 ;Ŷ0# such
that the quantity

i@X0 ;Y0#2@X̂0 ;Ŷ0#iF

is minimized, subject to the constraint that the column sp
of Ŷ0 is contained in the column space ofX̂0. If such a
minimizing matrix can be found, then any matrixÂT that
solvesŶ05X̂0AT is a total least-squares solution of Eq.~7!
@23#. We obtain the Eckmann-Ruelle linearization~3! by set-
ting A5(ÂT)T andb5m( ŷ)2Am( x̂), wherem( x̂) andm( ŷ)
are the means of the adjustedx andy observations, respec
tively. A solution of the total least-squares problem can
formulated as an iterative nonlinear minimization proble
@22# or, in the case of Eq.~9!, in terms of the singular value
decomposition of@X0 ;Y0# @23#.

The total least-squares solution has some desira
asymptotic properties. It can be shown that the total lea
squares estimator of the matrixA is less biased than th
ordinary least-squares estimator and that the bias tend
zero as the number of observationsn tends to infinity.~See
Ref. @23# for details.!
3-4
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BOOTSTRAP ESTIMATES OF CHAOTIC DYNAMICS PHYSICAL REVIEW E64 016213
However, the behavior of the total least-squares estim
is harder to characterize for intermediate values ofn. The
total least-squares algorithm estimates new observationX̂
and Ŷ as well as a matrix of coefficients,Â, such thatŶ
5X̂ÂT. Thus total least squares has more degrees of free
than ordinary least-squares regression. As a result, one
expect that total least-squares estimators of the regres
parameters have larger variance than in the ordinary le
squares case.

There is no convenient expression for the standard e
of the parameter matrixÂ in total least squares, but we ca
estimate it using bootstrap sampling. As an illustration,
consider the application of the total least-squares algori
to the collection of data shown in Fig. 2. One hundred bo
strap samples are drawn and the total least-squares algo
is applied to each. The bootstrap mean of the matrixA is

A5S 0 1

0.3084 20.9405D ,

which is close to the ordinary least-squares estimate in
~5!. However, the bootstrap standard error is

s200~A!5S 0 0

1.115 0.7765D ,

which is more than ten times larger than that of the ordin
least-squares estimator using the same data.

Numerical experiments using bootstrap sampling sugg
that total least-squares estimators have large variance w
they are applied to Eckmann-Ruelle linearizations. When
number of observations is limited (n is between 25 and 200
for typical laboratory data sets!, the total least-squares algo
rithm appears to be much more sensitive to outliers and
influential points than ordinary least squares. If the meas
ment noise is significant, then it is probably better to prep
cess the data using a filtered embedding@13# or a nonlinear
noise reduction method@6# than to employ total least square
on unfiltered data. Alternatively, if independent informati
about the measurement noise is available, then one ca
tempt to apply a bias correction to the ordinary least-squa
estimator@24#.

V. THE UNCERTAINTY IN LYAPUNOV EXPONENT
CALCULATIONS

How can one assess the uncertainty in a Lyapunov ex
nent calculation from time series data? Every algorithm
computing Lyapunov exponents relies on an estimate of
linearized dynamics in a neighborhood of every point on
reconstructed attractor. As discussed above, there are m
sources of error in such estimates. We argue that it is
particularly useful to treat these errors as random variab
Instead, we suggest that the uncertainties in the local lin
izations be treated asintrinsic errors, and we describe a he
ristic procedure to quantify this intrinsic uncertainty. N
merical experiments suggest that this heuristic assessme
the uncertainty agrees reasonably well with the range
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Lyapunov exponent estimates obtained from different e
beddings of time series data.

The distinction between intrinsic and random errors is i
portant when one wants to bound the uncertainty in a ca
lation. Consider a set of measurements$u i% i 51

n that approxi-
mate some unknown quantityQ. If the measurement error
e i are random, then we model the observations asu i5Q
1e i , where thee ’s are random variables chosen from som
probability distribution. If, for instance, thee ’s are assumed
to be independent and identically distributed with mean
and variance«2, then a reasonable estimate ofQ is the mean
of the observations,ū5( i 51

n u i /n, whose standard deviatio
is

s~ū !5
«

An
. ~10!

Thus the uncertainty inū decreases as more observatio
become available.

A contrasting situation occurs forintrinsic errors. Sup-
pose that$u i% i 51

n is a set of real numbers of comparab
magnitudes, stored as floating-point values in a compu
Consider the uncertainty in their computed mean. Typica
intermediate results are rounded toward zero about as o
as they are rounded away from zero, but it does not foll
that the rounding errors approximately cancel out and the
fore can be ignored. The floating-point representation of e
u i has an intrinsic uncertainty« i , due to the finite precision
If each u i is of comparable magnitude, then each« i is
roughly equal to a common value«. The uncertainty in the
computed mean is approximately

(
i 51

n

« i /n5(
i 51

n

«/n5«. ~11!

In contrast to the random error model leading to Eq.~10!, the
availability of more observations does not decrease the
certainty in the floating-point estimate of the mean.

Benettin’s algorithm, described below, estimates
Lyapunov exponents on an attractor as the geometric m
of local expansion rates computed along each point o
given orbit. We suggest that bootstrap sampling can be u
to estimate the uncertainty in the local expansion rates,
propose a measure, analogous to that in Eq.~11!, for quan-
tifying the uncertainty in the estimated Lyapunov expone
that arises from sampling variability on the attractor. A
though the procedure lacks a rigorous justification, prelim
nary numerical results are promising.

We recall some basic definitions. Letf be a diffeomor-
phism of anm-dimensional manifoldM to itself. LetDf k(x0)
denote the derivative of thek-times iterated map,f k, evalu-
ated atx0; by the chain rule,Df k(x0)5Df(xk21)•••Df(x0),
where xi 115f(xi). For each pointxPM and vector v
PTxM ~the space of tangent vectors tox), define

l~x,v!5 lim
k→`

1

k
logiDf k~x!vi ~12!
3-5
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ERIC J. KOSTELICH PHYSICAL REVIEW E 64 016213
whenever the limit exists. It can be shown that there are
mostm distinct values ofl(x,v), called theLyapunov expo-
nentsof f at x. If f is ergodic for some invariant measurem,
then the Lyapunov exponents are the same form-almost ev-
ery x. The Oseledec multiplicative ergodic theorem sta
conditions under which the Lyapunov exponents are gua
teed to exist and gives a splitting ofTxM into orthogonal
subspacesE1(x), . . . ,Em(x) such that l(x,v)5l j for v
PEj (x). ~See Ref.@26# for details.!

Roundoff error makes a direct evaluation ofDf k imprac-
tical for large values ofk. Benettinet al. @27# have developed
an iterative numerical procedure, summarized in algorit
B, that estimates the Lyapunov exponents for a mapping
the formxk115f(xk) by computing one-step expansion rat
a along an appropriate set of orthonormal subspaces.
algorithm is repeated forN steps, whereN is as large as
practical; the initial condition isx0. To simplify the notation,
the left arrow (←) indicates that the quantity on the left
overwritten by the quantity on the right. Thev’s andw’s are
temporary vectors that are redefined on every iteration.

Algorithm II.
Step 0. Setk←0 and letu1 , . . . ,um be an arbitrary set o

orthonormalm vectors, called theLyapunov basis.

Step 1. Setwj←Df(xk)uj , j 51, . . . ,m.
Step 2. Leta1(k11)5iw1i . Setu1←w1 /a1(k11).
Step 3. Forj 52, . . . ,m:
~a! Setvj←wj2( i 51

j 21^wj ,wi&wi .
~b! Let a j (k11)5ivj i .
~c! Setuj←vj /a j (k11).
~The angle brackets denote the standard inner prod

The Gram-Schmidt orthonormalization should be repla
by a QR decomposition ifm is larger than 5 or so.!

Step 4. Setk←k11. If k,N then go to step 1.

The j th Lyapunov exponent is estimated as

l j5
1

N (
i 51

N

loga j~ i !. ~13!

Thea ’s are theone-stepexpansion rates; i.e.,a i(k) is the
local expansion rate atxk along the subspace spanned by t
i th Lyapunov vector. Some of the initial one-step expans
rates may be omitted to allow transients to decay; in t
case, the sum in Eq.~13! runs from an appropriateN0 to N,
and the factor 1/N is replaced by 1/(N2N011). Sometimes
the renormalization of theu’s is done after everyp.1 itera-
tions, in which caseDf is replaced by the derivative of th
p-times iterated mapDf p, and the factor 1/N in Eq. ~13! is
replaced by 1/(Np). When Benettin’s algorithm is applied t
an embedding, the Eckmann-Ruelle matrixAk computed at
xk is used as an approximation ofDf(xk) @or of Df p(xk), as
appropriate#.

A key question is how to quantify the uncertainty in th
estimates of the Lyapunov exponents using Eq.~13! when
the tangent maps of the underlying dynamical system
estimated with Eckmann-Ruelle linearizations. Golia a
Sandri@28# have suggested a resampling technique to ge
ate new time series from an observed one in such a way
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the new time series can be considered products of the s
underlying dynamical system. They perform a Lyapunov e
ponent calculation on each resampled time series, then
the variance of the computed exponents as an estimate o
uncertainty. However, the resampling method is valid only
the generated time series can be shown to shadow the o
nal one sufficiently closely@28#, which may be difficult to do
if the underlying dynamical system is not known explicit
or if observational noise is appreciable. Genc¸ay @29# has pro-
posed a bootstrap method that relies, in part, on product
random permutations of the Jacobian matrices for appr
mating the limit~12!. Ziehmannet al. @30# have argued tha
Gençay’s approach is inappropriate if the matrix products
Eq. ~12! do not commute.

The premise behind efforts to construct a confidence
terval for Lyapunov exponents is that the errors in estimat
the local dynamics arise primarily from random quantitie
While noise in the observations is a source of randomn
significant uncertainties in the estimated dynamics can a
even when the observational error is negligible~as may oc-
cur in time series from numerical simulations!.

For example, spurious Lyapunov exponents can arise
an artifact of the embedding. Consider a time-delay emb
ding of a time series from the He´non map in a five-
dimensional phase space. The embedding dimension gua
tees a diffeomorphism between the original attractor and
reconstructed one~because 5 is more than twice the bo
dimension of the He´non attractor@1#!. At each point, the
Eckmann-Ruelle linearization produces a 535 matrix. Algo-
rithm B yields five estimated Lyapunov exponents, three
which are spurious. The difficulty arises because
Eckmann-Ruelle matrix in a 5-dimensional embedding is
the tangent map of the underlying dynamical system, e
though it consistent with the dynamics. The spurious ex
nents arise as part of a deterministic process@10#. ~The Ap-
pendix describes a heuristic method that avoids, or at le
minimizes, the computation of spurious exponents, but
point here is that no probability model accounts for the a
pearance of spurious Lyapunov exponents in time series
beddings.!

Systematic errors in local estimates of the dynamics a
arise from the natural measure of the attractor. Some reg
of the attractor may be so sparsely populated that it is
possible to obtain enough observations in a given neighb
hood to compute an Eckmann-Ruelle linearization. If t
neighborhood is enlarged to include more points, then n
linearities may become significant and Eq.~3! may be a poor
approximation to the local dynamics. One can fit a quadra
model instead, but in anm-dimensional embedding, a qua
dratic model requires the estimation of up to (m31m2)/2
more parameters than for the linear model~3!, and their vari-
ance is larger than in a linear model. Alternatively, there m
be many observations, but due to the strongly volum
contracting nature of the dynamics, all the manifolds in
neighborhood lie on a low dimensional hyperplane to with
the observational accuracy. If there are few, if any, obser
tions in transverse directions from which to estimate the
cal contraction rate, then the Eckmann-Ruelle linearizat
3-6
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TABLE I. Lyapunov exponents computed from time series of the He´non map.

Noise Estimated exponent Range u(l)

h50 l150.63260.014 @0.594,0.662# 0.008
l2522.33860.050 @22.504,22.228# 0.302

h50.005 l150.63660.013 @0.596,0.666# 0.016
l2522.61960.089 @22.876,22.444# 0.490
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may be unreliable. As suggested in Fig. 1, these difficul
tend to occur in a neighborhood of every point in certa
regions of the attractor.

These considerations suggest that uncertainties in l
expansion rates should be regarded as intrinsic errors.
example, consider a map of the formxn115axnmod1. The
Lyapunov exponent for almost every initial condition isl
5 loga. In any numerical simulation, roundoff error yields
common uncertainty« in the representation of loga, and Eq.
~11! applies. Suppose instead thata is estimated from data
how might the uncertainty inl be quantified?

Bootstrap sampling is one possibility for quantifying th
uncertainty in local expansion rates, provided that there
enough observations in a neighborhood to give a reason
approximation to both the natural measure and to the lin
ized dynamics. On each iteration, the Eckmann-Ruelle
trix Ak , computed from all the observations in a suitab
neighborhood centered atxk , is substituted forDf(xk) in
algorithm B. The matrixAk is used to update the Lyapuno
basis at every step. In addition, at each pointxk , B bootstrap
replicatesAk* of Ak are generated; steps 2 and 3 of the alg
rithm are repeated, substitutingAk* for Ak , to generate boot-
strap replicatesa j* (k) of a j (k) for each j. The bootstrap
mean and standard error of eacha j (k) are computed using
Eqs. ~1! and ~2!. ~The bootstrap procedure can be used
gardless of whether theAk’s are estimated from ordinar
least squares, total least squares, or some other method!

If we regard sB„a j (k)… as an estimate of the intrinsi
local error in the expansion rate at thej th point on the tra-
jectory, then the analysis leading to Eq.~11! suggests that a
bootstrap measure of the uncertainty in thej th Lyapunov
exponent associated with the trajectory is

u~l j !5
1

N (
k51

N

sB„a j~k!…. ~14!

We emphasize that Eq.~14! is not a confidence interval in
the conventional statistical sense. However, numerical
periments suggest that it gives a reasonable assessment
range of values ofl j that are computed in various cases.

Table I shows the Lyapunov exponents computed fr
Hénon time series as follows. One hundred initial conditio
are chosen at random within the basin of attraction. For e
initial condition, the He´non map~4! is iterated to produce a
time series of 2000 values~the first few iterates are discarde
to remove transients!. Each time series is embedded in tw
dimensions using a time-delay embedding. An Eckma
Ruelle linearization is computed at each point, and Ben
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tin’s algorithm is used to estimate the Lyapunov expone
from each time series~i.e., each exponent is based on a r
constructed attractor consisting of 2000 points!. The process
is repeated for each of the 100 time series, giving 100
ferent estimates of the Lyapunov exponents. Their mean
standard error are reported in the formm6se in the first two
rows in the second column of the table.~This procedure is
analogous to that proposed by Golia and Sandri@28#, except
that the time series have been obtained by iterating
Hénon map from different initial conditions.! The procedure
is repeated, except that uniformly distributed random nois
added to each time series to simulate observational n
with mean zero and variance equal to 0.5% of the varianc
the original time series. The mean and standard error of
Lyapunov exponent estimates is reported in the third a
fourth rows of the second column in Table I.~The third
column of Table I gives the range of all 100 estimate!
Finally, for each time series, we generate bootstrap estim
of the uncertainty in the one-step expansion rates as
scribed above. For each time series, we computeu(l1) and
u(l2), as defined by Eq.~14!. The fourth column in Table I
shows their average values.

The ‘‘true’’ values of the exponents, based on Benettin
algorithm applied to 107 iterations of Eq. ~4!, are l1
50.6047 bits/iteration andl2522.342 bits/iteration. The
positive Lyapunov exponent tends to be overestimated fr
the embedded time series, and the negative exponent is
large~in absolute value! when estimated from the noisy tim
series; the discrepancies may be due to systematic erro
described above. However, the uncertainties given by
~14! for l1 and l2 are representative of the range of es
mates of the exponents obtained from the different time
ries, particularly in the presence of observational noise@31#.

Table II shows estimates of the largest three Lyapun
exponents obtained from different time-delay embeddings
a laboratory time series from a Belousov-Zhabotins
chemical reaction@32#. The units are bits per 125 time step
~the shortest period of any embedded periodic orbit wit
the attractor is approximately 125 times the sampling r
@33#!. Benettin’s algorithm has been applied using Eckma
Ruelle linearizations from embeddings in three, four, a
five dimensions and with time delays of 60, 90, and 120 ti
steps.~The latter time delays give comparable values of
mutual information@7#, and a graphical analysis of the da
suggests that a three-dimensional embedding space su
to reconstruct the attractor.!

The parenthesized values are the uncertainties in each
culation as given by Eq.~14!. The uncertainties in most case
are consistent with the range of estimates obtained from
3-7
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TABLE II. Estimates of the three largest Lyapunov exponents from a time series of the Belo
Zhabotinskii chemical reaction. Numbers in parentheses are estimates of the uncertainty computed f
~14!.

l t560 t590 t5120

m53 l1 1.19 ~0.35! 1.41 ~0.40! 1.19 ~0.55!
l2 20.29 ~0.53! 20.29 ~0.60! 20.03 ~0.73!
l3 26.24 ~1.80! 23.53 ~1.61! 23.68 ~1.84!

m54 l1 1.04 ~0.24! 0.93 ~0.39! 0.84 ~0.46!
l2 20.33 ~0.30! 20.06 ~0.44! 20.01 ~0.54!
l3 22.86 ~0.76! 22.84 ~1.00! 21.63 ~0.88!

m55 l1 0.73 ~0.19! 0.98 ~0.48! 0.91 ~0.43!
l2 0.08 ~0.25! 0.14 ~0.49! 0.16 ~0.50!
l3 22.34 ~0.48! 21.36 ~0.75! 21.23 ~0.71!
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different embeddings@34#. The uncertainties inl1 and l3
are about 25–50% of the estimated value of the correspo
ing exponent. This result suggests that Lyapunov expon
computations from embedded flows are subject to a la
inherent uncertainty than those from discrete maps.

Although the numerical results above are suggest
there are several caveats.

~1! The bootstrap estimates of the standard errors of
local expansion rates are meaningful only if the underly
model@e.g., Eq.~3!# is a good approximation of the dynam
ics at each point. The bootstrap procedure does not acc
for systematic errors due to nonlinearities or to artifacts
the embedding.

~2! The bootstrap estimates may be unreliable if there
insufficient data to approximate the natural measure of
attractor in a given neighborhood. In general, the boots
method fails if the statistic in question depends sensitively
the tails of the underlying distribution~see e.g., Ref.@11#,
Chap. 7!.

~3! The quantityu(l) is not a confidence interval in th
conventional sense. Therefore the usual statistical heuri
do not apply. For instance, one cannot conclude that if
estimated value of the largest Lyapunov exponent satis
l1.3u(l1), then the likelihood is greater than 99% thatl1
is positive.

Finally, and most importantly, the arguments leading
the definition ofu(l) are not rigorous. While the numerica
results in Tables I and II are promising, they are not co
prehensive. More work is needed to determine whether
use ofu(l) ~or some similar quantity! can be justified theo-
retically.

VI. CONCLUSIONS

Estimates of the local dynamics on a reconstructed att
tor may be especially sensitive to the measured value
only a few points, even if many observations are used to
the model. Bootstrap sampling provides a convenient wa
identify such influential points. Bootstrap sampling also p
vides a way to characterize the uncertainty in estimates
one-step expansion rates in Benettin’s algorithm for comp
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ing Lyapunov exponents. There are many sources of syst
atic error that make it problematic to derive a confiden
interval for the estimated values of Lyapunov exponen
However, if one regards the uncertainties in one-step exp
sion rates as intrinsic errors~much as one treats roundo
error in interval analysis!, then their average value may giv
a useful characterization of the reliability of Lyapunov exp
nents computed from a particular time series.
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APPENDIX

The computation of spurious Lyapunov exponents can
minimized if care is taken to prevent overfitting of th
Eckmann-Ruelle linearization. The embedding dimens
must be sufficiently large to guarantee the existence o
diffeomorphism between the reconstructed attractor and
underlying dynamics@1#. However, most of the observation
in a given neighborhood on the reconstructed attractor m
lie in a lower dimensional subspace. In such cases, the
rank-r solution of the least-squares problem~7! should be
obtained for an appropriater ,m.

For this purpose, we form the matrix of observationsX0
as outlined in Sec. IV and compute its singular value deco
position @35# to obtain the singular valuess1>s2>•••>sm
>0. As si is the square root of thei th largest eigenvalue o
X0

TX0, it provides a measure of the total variance of t
observations along the corresponding eigendirection~i.e., the
i th right singular vector ofX0).

The goal is to determine the value ofr such that
sr 11 , . . . ,sm are ‘‘negligible.’’ Given r, we change coordi-
nates and project the observations onto the subspace spa
by the firstr right singular vectors ofX0. We fit the model
~3! using least squares to obtain an Eckmann-Ruelle ma
of rank r, then change coordinates back toRm.
3-8
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One criterion is to regard a singular value as negligible
it is smaller than the measurement error in each compo
of X0 @36#. Another criterion is to defineV5s1

21•••1sm
2 ,

which is a measure of the total variance of the observatio
then select a fractionp, 0,p<1, of the variance to be ex
plained by the least-squares procedure for each Eckm
Ruelle linearization. The choice ofp should be based on a
estimate of the noise level in the observations and/or an
ol
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timate of the size of the nonlinear terms given the radius o
typical neighborhood over which the linearization is com
puted. For example, if the time series consists of meas
ments that are accurate to seven significant bits, then
reasonable to take, say,p50.99. We letr be the smallest
integer such that (s1

21•••1sr
2)/V>p. This is the criterion

that is used in all of the Eckmann-Ruelle linearizations
ported here.
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