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Bootstrap sampling is a nonparametric method for estimating the standard error of a statistic. This paper
describes the application of bootstrap sampling to estimate the error in local linear approximations of the
dynamics on chaotic attractors reconstructed from time series measurements. We present an algorithm for
identifying influential points, i.e., observations with an especially large effect on a least-squares fit, and an
algorithm to estimate the standard error of regression coefficients obtained from total least squares. We also
consider the application of bootstrap methods to assess the uncertainty in Lyapunov exponent computations
from chaotic time series.
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[. INTRODUCTION Lyapunov exponents from embedded chaotic attractors and
suggests a heuristic measure of the relative uncertainty using
A primary goal of existing algorithms and software to bootstrap estimates of the standard error in one-step expan-
analyze chaotic time series is to allow experimentalists tgsion rates.
characterize their data using many of the same tools that
theoreticians use to characterize their equations. Under mild
hypotheses, it is possible to embed the data to reconstruct an Il. BACKGROUND
attractor from a time series of mea_sureme{m;_Q]. The em- . Bootstrap estimates of the standard errértypical prob-
bedding can be used to generate piecewise linear approxima-

tions of the dynamics on the attractor. Usually, no analytical in mathematical statistics is the estimation of some pa-
ynam C i ! YU, ameterg= 0(P) of a probability distributiorP. Even ifP is
form for the functionf(x) that maps a given point to its

observed image is available, but often it may be approxi_known explicitly, formulas for the standard err(standard

mated as(x) = Ax-+ b, where the matrive and vectotb are deviation of # are difficult to derive except in simple cases

obtained by a linear least-squares computation using th e.g., whend is the mean of the distributionOften, P is not
points in a suitably small neighborhood Bf[3]. The ap- nown explicitly but is taken as the empirical distribution

S . . defined by a given set of observations. The bootstrap is a
proximations, in turn, can be used to estimate Lyapunov ex:

i o computational procedure that provides reliable estimates of
ggir]sin;[r?[tdrg;e rgg:gr\fgt?gtr[grm predictiori$], or reduce the the standard errofse of 6, often denoted se or o(6),

It is well known that such computations must be doneprovided that the available data is a reasonable approxima-

with care. There are several sources of systematic error, ir;“—On of trle underlying probability d'Str.'bUt'oml’lz' .
Let x=(Xq,Xs, ... X,) be a collection oh observations

cluding a poor choice of time deldy], noise in the data, 5" o ‘from an underlying probability distributiéh
which introduces a bias in ordinary least-squares estlmator(:%hat may or may not be known explicillyLet s(x) be a

[8]; and a lack of observatio®]. Moreover, embeddings - ,
can produce spurious Lyapunov exponeli8]. Neverthe- statlst|c_ to estlma_te tDe pargmetelt o(P). A _bootstrap
Ssé’:\mplels a collectionx* consisting ofn data points drawn

less, with appropriate precautions, one can make piecewi - . :
approximations of the dynamics and use them to estimatlgdependently from the original observations at random with

guantities like Lyapunov exponents. Yet a basic question rer_eplacement and with probability i/ (Each observation is

mains: how can one estimate the uncertainty in the approxf—aqually likely to be chosen, and a given observation may be

mations? chosen once, more than once, or not at) dlhe quantity

This paper describes several applications of a statisticaq* —s(x") is abootstrqp rephcateo_f 0. .
method, calledbootstrap samplingto quantify the uncer- Tht_e boot_strap algonthm_for estimating the standard error
tainty in estimates of dynamical information from data. Sec—a(e) is straightforward. Using a random numbgr Qe“e'rator*
tion Il describes the bootstrap method. Section I1l outlines £N€ generateB bootstrap samples” , each of which is used
simple, effective, automatic algorithm that uses bootstraff® compute abootstrap replicatedf =s(x), i=1,...B.
sampling to identify small sets of influential points in least- I he bootstrap mearf ¢ is the mean of the bootstrap repli-
squares estimates of the local dynamics on a reconstructé&@tes,
attractor. (A point x is influential if the regression coeffi-
cients are especially sensitive to small changes in the coor-
dinates ofx.) Section IV shows how bootstrap sampling can
be used to estimate the variance in regression coefficients
computed from total least-squares methso called error-
in-variables methods Section V considers the inherent dif-
ficulties in devising confidence intervals for estimates ofThe bootstrap standard erroof 6 is

1 B
ne(0)=g 2 0. (1)
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The corresponding Eckmann-Ruelle linearization is a 2
\ — - X 2 matrix A that is computed from the data points within
- the original ball and their corresponding images in the el-

lipse. The singular values; and s, of A determine the
lengths of the major and minor axes, respectively, of the
ellipse[15]. In this examples; is determined from a large
number of data points, but to within the observational accu-
B racy, the value 0§, is determined almost exclusively by the
1 N 2 two points on the less probable strigAn example of this
op(6)= B—1 ,21 [6F —us(0)]7| @ sjtuation in the Haon map is presented belowHence the
estimate ofs, is particularly sensitive to small errors in the
[Equationg(1) and(2) are sometimes called tm®nparamet- Measurement of these two points; they are cailiéidiential
ric bootstrap estimates of the mean and standard error, r@ointsfor this reason.
spectively, because they are based on the empirical distribu- An outlier is a point that is relatively distant from the
tion of the datd. The ideal bootstrap estimate of-(¢) is Mean of the observations; outliers sometimes result from
limg_...o5(6). Values ofB between 25 and 200 usually yield Particularly large errors in measurement. An influential point
satisfactory approximations af(6) for most statistics of Nneed not be distant from the mean, but small changes in an

FIG. 1. A schematic illustration of influential points.

12

practical interesf11]. influential point have much bigger effects on the regression
Eckmann-Ruelle linearizatiorn a typical laboratory ex- function relative to small changes in the other observations.
periment, a time series of observatidnsi=1,2, ... is ob- However, an outlier need not be an influential point, and an

tained at equal intervalst. Under mild hypothesed,2], an  influential point need not be an outIiES]. Moreover, a small
attractor can be reconstructed by generating an appropriafé‘b_set of points may form an influential subset, as illustrated
sequence of vectors from the time series. One populdf Fig- 1. . )
method is time-delay embedding, where one fixes the em- Most statistics texts recom_mend a.graph|cal analysis of
bedding dimensionm and time delayr and forms vectors the data when fitting a regression function, as the presence of
Xi=(ti tis i tison tivm-17), i=12,... . (Other ap- outliers and influential points often is evident from a plot.
proaches are also possiljid.) Whatever the method used to However, graphical analysis is practical only when there is a
generate the vectoss, each vector is regarded as a function small number of independent variables and a small number

of the previous one in time ordex; , ;=f(x). of regression functions to be fitted. Many heuristic statistical
Althoughf is not known in practice, Eckmann and Ruelle Methods, largely based on an analysis of residuals, have been
[3] suggested a local linear approximation: proposed to identify influential points when graphical analy-
sis is impractical 16]. One difficulty with the heuristic meth-
Xi+1=f(x)~AX +b; , (3)  ods in the case of chaotic data analysis is that the points with

the greatest influence on the Eckmann-Ruelle matrix need

where A; is anmxm matrix andb; is anm vector. (The  not have large residuals. S .
subscript emphasizes the dependenceAofnd b on x;.) '!'he b_ootstrap is a usefgl way to identify sub§ets gf mflu-
Equation(3) is the Eckmann-Ruelle linearizatioof f at x; . ential points When_computm_g Eckma_nn-R_ueII_e I|r_1ear|zat|c_>ns
Both A andb can be computed using linear least squares if £f the local dynamlcs._ConS|d_er the situation in Fig. 2, which
sufficiently large number of observations can be found in &"OWS & set of points in a neighborhood of thenbte attrac-
suitably small neighborhood af . A collection of Eckmann- tor and their corrgspondm_g images. The attractor is a time-
Ruelle linearizations can be used to estimate the Lyapuno{€lay reconstruction, and in this case,

exponents of the attractg#]; reduce the noise in the data t t

[6]; make short-term predictions of the underlying chaotic ( '1) :( : )
procesg5,13]; or apply small controls to keep the dynamics '
near a given saddle orHit4].

. @

1.4-t2+0.3_4

The neighborhood in Fig.(32) shows observations that lie in

one of two main bands; each band corresponds to closely

spaced pieces of the chaotic attractor. The dynamics
An important question is how the estimatesfAfandb  squeezes the two bands closer together. The computed esti-

depend on the observations. Consider a distribution of point§1ate

like the one illustrated schematically in Fig. 1. The points lie

along two strips(manifold9 in the reconstructed attractor. _ 0 1

One of them has a much larger natural measure than the ~10.3009 —0.945

other (as suggested by the thicker band small ball cen-

tered about one of the points encompasses a large numberisfan accurate approximation of “true” Jacobian matik

points along the more probable strip and, in this exampleat the reference point,= (0.7864,0.4721). We generaie

only two points along the less probable strip. The dynamics=100 bootstrap samples and compute a bootstrap replicate

maps the ball approximately into an ellipse after one iteraA* from each. We apply Eq2) elementwise to obtain the

tion. bootstrap standard error,

IIl. INFLUENTIAL POINTS IN LINEAR LEAST SQUARES

®
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0.55 : In contrast, the observations in this neighborhood yield val-
O ues of [A—A*|/||w(X)— w(x*)|| that are as large as 400.

) The presence of the influential subset implies that the com-
0.5 e puted approximation of the dynamics does not vary continu-
ously with the observations.
d e Whenever exceptional estimates of the Eckmann-Ruelle
' matrix are encountered, one can inspect the corresponding
bootstrap samples to identify influential subsets of small
. numbers of points. Because each point in a bootstrap sample
@ of sizen is chosen independently with probabilityn]/the
0.4 ‘ ‘ S probability that a particular observatiaf doesnot appear in

0.7 075 , 08 0.85 a given bootstrap sample is £11/n)"~ 1/e~0.37 for mod-
est values of. If two points form an influential subset, then
the probability that neither is chosen in a given bootstrap
. sample is approximately 47, or 14%. Hence a modest num-
#+1 e ber of bootstrap replicates is likely to make apparent the
. influence of the two points on the estimation Af
14 "t This observation underlies following algorithm to identify
' C) influential points in an Eckmann-Ruelle linearization.

045 | o |

1.5 [ 8

Algorithm I. Let a set of observationSin a small neigh-
b borhood on the attractor be given.
13 (®) ‘ ‘ (1) GenerateB bootstrap samples froid

0.4 0.45 0.5 0.55 (2) From each sample, compute a bootstrap repliédte

L using linear least squares.

(3) Compute the bootstrap mearg(A) and the bootstrap
standard errotrg(A).

(4) For each bootstrap replica#®*, determine whether
[A* — ug(A)| =] og(A)|. (The Frobenius norril9] is suit-
0 0 able for this purpose, and it is less expensive to compute than
Uloo(A):< )) the spectral nornp.

0.1379 0.092 (5) There arek=0 bootstrap replicates that satisfy the

criterion in step 4. Ik>0 then lettE be the subset ddwhose

The bootstrap mean and standard errors of the sing_ulgr vaélements dichot appear in any of thé& corresponding boot-
ues ofA ares, = 1.389+-0.036 anc52:0.232t 0.113. Simi- strap Samp|e5_ k=0 then letE be the empty set.

larly, the bootstrap standard error of dets about 28% of its o )
true value, 0.3. Because the points ik do not appear in any bootstrap

The standard errors is, and def\ are more than ten Sample that yields an exceptional mé&pmay be an influen-

times larger than those in typical neighborhoods on the atli@! Subset(If Eis empty, then there are no influential points
tractor[17]. They reflect the uncertainty in the local contrac- PY the criterion in step 4.The probability that a noninfluen-
tion rate due to the small number of points used to estimati@! POINt appears in any given excep:pnal samily the

it: there is an influential subset consisting of the two points affiterion in step 4is about 1-e "~ or 63%; hence iB is too

the upper right of Fig. @). Within the measurement accu- Small, then algorithm I may generate a &that contains
racy, all the information about the local contraction rateMany noninfluential observations. One useful heuristic is to
comes from the two circled points. In bootstrap sample§hooseB so that if an influential subset does exist, then the
where one or both points are included, the computed value cﬁxpected number of exceptional samples identified in step 4

A* is close to that in Eq(5). However, in bootstrap samples S at least 12. The probability that a noninfluential point ap-
where both points are omitted, typically pears in all 12 exceptional samples is{&1)12~0.0041. If
' Scontains, say, 200 observations, then the expected number

0 1 ; of noninfluential points irE is less than 1. This heuristic can
. reliably identify any single influential point iB=33; any
0.7432 —0.631 pair of influential points ifB=89; and any trio of influential

The omission of the points in the influential subset changegomts ifB=241.

r _ o . o
the estimate of considerably, even though the means of the de\Ae/:rr:zEs Ciir?le?T)Erz] ?r?e ng?uigfgjfemleahﬁgler;ltsih ngt;nﬁv(\ﬁre
observations are nearly identical. P P ying '

The second derivative of the'Hen map is constant, so ha; data from a n_umerica! Si”.“”'atiof‘ or other source for
which the observational noise is negligible, then influential
IDF(x) — DF (x| points might as We_II be retained in the least-squares compu-
= T A s tation. If the noise is appreciable, then the presence of influ-
[lx—x*|| ential points means that at least some aspect of the estimated

FIG. 2. (a) Observations in a typical neighborhood of thende
attractor, andb) their images. The circles show an influential sub-
set.

we-|
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dynamics relies on a small number of observations, and thusquaressolution of Eq.(7) [23]. The Eckmann-Ruelle linear-

is subject to a relatively large uncertainty. In thénda ex-  jzation (3) is obtained by settindd=(AT)T and b= u(y)
ample above, it would be appropriate to discard the influen-— A, (x). One can regard the ordinary least-squares ap-

tial points if noise were appreciable and compute the bestroach as finding the smallest adjustment to the observation
rank-1 approximation to the dynamics; this poses no diffi-matrix Y so that Eq(7) has a solution.

culty for an application that seeks to estimate the largest |t can be shown that the matrix
Lyapunov exponent.

Th(_e fraqtal structure of chaotic attractors and the large AT=(X,"X0) "XV, ®)
variations in the natural measure throughout the attractor

mean that influential points arise relatively frequently in

practice. In addition, laboratory data often contain isolatedpm\_“de.S a least-squares So'”flfn_ of &4 [18]. The model
“glitches” that can be identified using bootstrap sampling. (8 implies thatY,, and henced’, is a random matrix. The

Algorithm 1 can be applied to any class of models for theestimator(S) isAsaid to be amunbiasedestimator ofA™: the
dynamics, such as higher-order Taylor polynomi{&é] or ~ expectation ofAT is the transpose of the underlying “true”
radial basis functiong21]. Although algorithm | requires matrix A in the model(6).

significant computational effort, modern computers make its Now consider the time-delay reconstruction of an attrac-
implementation practical; local linear approximations to eacHor from a chaotic time series whose values are contaminated
point in a data set of fOpoints can be computed in 10-60 With measurement nois¢Assume that the errors are inde-

min for embedding dimensions up to 6 or so. pendent and identically distributed with me@rand a com-
mon covariance matrix that is diagondh this case, there is
IV. BOOTSTRAP ESTIMATES OF THE ERROR IN error in all the observations, so the underlying model in the
TOTAL LEAST SQUARES Eckmann-Ruelle linearizatio(8) is
The presence of measurement noise complicates the sta- yi=A(Xi+8)+b+e€, 9

tistical estimation ofA andb even in the absence of influ-

ential points. One difficulty is that the estimator for the co-where thed’s and €'s are vectors of independent and iden-
efficients ofA is biased, and the size of the bias depends onically distributed measurement errors. In this case, the esti-
the noise, not on the number of observatiolstal least mator (8) is a biasedestimator ofAT. The size of the bias
squaresprovides an alternative approach that reduces thélepends on the covariance matrix of the error terms and is
bias[22]; its use was suggested in RE8] as a possible way independent of the number of observati¢a8—25.

to enhance the accuracy of Lyapunov exponents computed The total least-squares algorithm adjusts both sets of ob-
from Eckmann-Ruelle linearizations. Although the total servations and finds parameteéxsandb so that the relation
least-squares algorithm reduces the bias, the application §&=Ax+b holds exactly for each adjusted observation. Let
total least squares to Eckmann-Ruelle linearization appearsx,;Y,] denote the augmentaux 2m observation matrix;

to give estimators with a significantly larger variance than inthe first m elements of théth row arex,— u(x) and the
ordinary least squares. secondm elements arey,— u(y). The total least-squares

In ordinary linear least squares, the observatiqrendy; problem seeks to find a new augmented mfﬂf%;?o] such
are assumed to satisfy relations of the form that the quantity

yi:AXi+b+ €, (6) " “
I0%0:5 Yol = [Xo: Yolllr

i=1,...,n,wherex; andy; aremvectors of observationg,

is anmXx m matrix, and thee's arem vectors of independent, is minimized, subject to the constraint that the column space
random error terms of meahand common variance. All of of Y, is contained in the column space . If such a

the error in the modef(6) occurs in the measurement@f.  minimizing matrix can be found, then any mati" that
f Yr\]llthogt Iosst_of genergllty, Wg may Sl:t;tr:aclt offtthe meansolves\?0=)20AT is a total least-squares solution of E@)

of tne observalions; andy; and re-cast the 1east Squares o4 \ye gptain the Eckmann-Ruelle linearizatic@ by set-

problem in a matrix form as follows. Lef, be thenXm , — (AT andb= (% ) wh ~ 4l

matrix whoseith row isy;— u(y), and letX, be thenxm N9 ’?‘]_(A ) anf r:“(é/>_Aé(X3’ Wbere,u(x_) andu(y)

matrix whose th row isx; — u(x). Equation(6) is equivalent ?felt € me?n_s 0 tf eha JUStlgl ndy o servatlonbsl, respec-b

to the overdetermined system tively. A solution of the total least-squares problem can be
formulated as an iterative nonlinear minimization problem

Yo=XAT. (7)  [22] or, in the case of Eq9), in terms of the singular value

decomposition of Xq; Y] [23].

(We assum&>m.) The ordinary least-squares algorithm at-  The total least-squares solution has some desirable

tempts to find a matri¥, that minimizeilYo—\?ollp subject asymptotic properties. It can be shown that the total least-

to th traint that h col ¥ is in th | squares estimator of the matri is less biased than the
0 the constraint that each column ¥, is in the column ordinary least-squares estimator and that the bias tends to

space ofX, [19]. Once such & is found, then any matrix  zero as the number of observatiamsends to infinity.(See
AT that satisfiesY,=X,AT is called anordinary least- Ref.[23] for details)
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However, the behavior of the total least-squares estimatdryapunov exponent estimates obtained from different em-
is harder to characterize for intermediate valuesoffhe  beddings of time series data.

total |east_squares a|gorithm estimates new observa‘fﬂ)ns The distinction between intrinsic and random errors is im-
and ¥ as well as a matrix of coefficients, such thaty portant when one wants to bound the uncertainty in a calcu-

oA lation. Consider a set of measuremepfig_; that approxi-
— T i=1
XA'. Thus total least squares has more degrees of freedo ate some unknown quanti®. If the measurement errors

than ordinary least-squares regression. As a result, one may o random then we model the observations és=©

expect that total least-squares estimators of the regre55|or6_ where thee's are random variables chosen from some
1

parameters have larger variance than in the ordinary Ieasf)'robability distribution. If, for instance, the's are assumed

squares case. tlp be independent and identically distributed with mean O

There is no convenient expression for the standard erro . 2 :
D and variance: <, then a reasonable estimatetfis the mean
of the parameter matriR in total least squares, but we can

. __ n X - -
estimate it using bootstrap sampling. As an illustration, W&Of the observations= 2., 6 /n, whose standard deviation

consider the application of the total least-squares algorithnlrQ’

to the collection of data shown in Fig. 2. One hundred boot-

strap samples are drawn and the total least-squares algorithm o(6)= & (10)
is applied to each. The bootstrap mean of the maris Jdn’

A=( 0 1 5) Thus the uncertainty irf decreases as more observations
0.3084 —0.9405" become available.

A contrasting situation occurs fantrinsic errors. Sup-
which is close to the ordinary least-squares estimate in Egpose that{¢,}[_, is a set of real numbers of comparable

(5). However, the bootstrap standard error is magnitudes, stored as floating-point values in a computer.
Consider the uncertainty in their computed mean. Typically,

0 0 intermediate results are rounded toward zero about as often

o200 A) = 1.115 0.776% as they are rounded away from zero, but it does not follow

that the rounding errors approximately cancel out and there-
which is more than ten times larger than that of the ordinaryffore can be ignored. The floating-point representation of each
least-squares estimator using the same data. #; has an intrinsic uncertainty; , due to the finite precision.

Numerical experiments using bootstrap sampling suggedt each ¢, is of comparable magnitude, then eaeh is

that total least-squares estimators have large variance whéaughly equal to a common value The uncertainty in the
they are applied to Eckmann-Ruelle linearizations. When th€omputed mean is approximately
number of observations is limiteadh(is between 25 and 200
for typical laboratory data setsthe total least-squares algo- . !
rithm appears to be much more sensitive to outliers and to 21 8/n=2 sin=e¢.
influential points than ordinary least squares. If the measure-

ment noise is significant, then it is probably better to preproy, contrast to the random error model leading to &d), the

cess the data using a filtered embeddibg] or a nonlinear 5y 4jjability of more observations does not decrease the un-
noise reduction methdd] than to employ total least squares certainty in the floating-point estimate of the mean.

on unfiltered data. Alternatively, if independent information  gapettin’s algorithm, described below, estimates the

about the measurement noise is available, then one can qlyanunoy exponents on an attractor as the geometric mean
tempt to apply a bias correction to the ordinary least-squares; |ocal expansion rates computed along each point of a

(13)
i=1

estimator{24]. given orbit. We suggest that bootstrap sampling can be used
to estimate the uncertainty in the local expansion rates, and
V. THE UNCERTAINTY IN LYAPUNOV EXPONENT propose a measure, analogous to that in (&d), for quan-
CALCULATIONS tifying the uncertainty in the estimated Lyapunov exponents

L that arises from sampling variability on the attractor. Al-
How can one assess the uncertainty in a Lyapunov expg;

lculation f ; ies data? E loorithm f hough the procedure lacks a rigorous justification, prelimi-
nent calculation from time series data? Every algorithm Oary numerical results are promising.

computing Lyapunov exponents relies on an estimate of the We recall some basic definitions. Lethe a diffeomor-
linearized dynamics in a neighborhood of every point on th hism of anm-dimensional manifold to itself. LetDf¥(x,)

reconstructed attractor. As discussed above, there are ma ¥note the derivative of thietimes iterated rﬁap‘,k, evalou—
sources of error in such estimates. We argue that it is ng ted atxy; by the chain ruleDf¥(xo) = Df(x,_1)- - - DF(Xo),

particularly useful to treat these errors as random varlable%here x..,=f(x). For each pointxeM and vectorv

Instead, we suggest that the uncertainties in the local linear- M ({ﬁé S aclzé of tangent vectorsxp, define
izations be treated dstrinsic errors, and we describe a heu- < ' P g

ristic procedure to quantify this intrinsic uncertainty. Nu- 1

merical experiments suggest that this heuristic assessment of A(x,v) = lim — log| Df¥(x)V| (12)
the uncertainty agrees reasonably well with the range of k—o0
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whenever the limit exists. It can be shown that there are athe new time series can be considered products of the same
mostm distinct values o (x,Vv), called theLyapunov expo- underlying dynamical system. They perform a Lyapunov ex-
nentsof f atx. If f is ergodic for some invariant measy©  ponent calculation on each resampled time series, then use
then the Lyapunov exponents are the sameuf@imost ev-  the variance of the computed exponents as an estimate of the
ery Xx. The Oseledec multiplicative ergodic theorem statesuncertainty. However, the resampling method is valid only if
conditions under which the Lyapunov exponents are guaranhe generated time series can be shown to shadow the origi-
teed to exist and gives a splitting @M into orthogonal  nal one sufficiently closel{28], which may be difficult to do
subspacesE;(X), . .. [En(x) such thath(x,v)=\; for v if the underlying dynamical system is not known explicitly

e Ej(x). (See Ref[26] for details) _ _ or if observational noise is appreciable. Ganf29] has pro-

~ Roundoff error makes a direct evaluationdFf* imprac- posed a bootstrap method that relies, in part, on products of
tical for large values ok. Benettinet al.[27] have developed  5ndom permutations of the Jacobian matrices for approxi-

an iterative numerical procedure, summarized in algqrith ating the limit(12). Ziehmannet al. [30] have argued that
tE;{ t?at estlma_tfes thi Lyapunc;v exponetnts for a m_appmtg OGena@y’s approach is inappropriate if the matrix products in
e formx, 1=f(x,) by computing one-step expansion ra esgq_ (12) do not commute.

o along an appropriate set of orthonormal subspaces. Th The premise behind efforts to construct a confidence in-

algorithm is repeated foN steps, whereN is as large as . . LT
c e L N . terval for Lyapunov exponents is that the errors in estimating
practical; the initial condition i%,. To simplify the notation, . ; S o
the local dynamics arise primarily from random quantities.

the left arrow ¢-) indicates that the quantity on the left is While noise in the observations is a source of randomness,

overwritten by the quantity on the right. Thés andw’s are I L X ; ;
temporary vectors that are redefined on every iteration significant uncertainties in the estimated dynamics can arise
" even when the observational error is negligitds may oc-

Algorithm 1. cur in time series from numerical simulations

Step 0. Sek«0 and letuy, . .. ,uy be an arbitrary setof ~ For example, spurious Lyapunov exponents can arise as
orthonormalm vectors, called théyapunov basis an artifact of the embedding. Consider a time-delay embed-

Step 1. Setv;—Df(x)u;, j=1,... m. d@ng of_ a time series from the 'Iﬂen_ map in a five-

Step 2. Letay (kK+1)=|w,|. Setuy—w, /ay(k+1). dlmenspnal phase.space. The embedplmg dimension guaran-

Step 3. Folj=2, ... m: tees a diffeomorphism betwee_n the original attractor and the

(8 Setv;—w;—=IZH(w; ,wi)w; . reconstructed ongbecause 5 is more than twice the box

(b) Let a;(k+1)= vl dimension of the.Hnaorj at.tractor[l]). At each pomt, the

(c) Setu;—v;/a;(k+1). Eckmann-Ruelle linearization produces &5 matrix. Algo-

(The angle brackets denote the standard inner productithm B yields five estimated Lyapunov exponents, three of
The Gram-Schmidt orthonormalization should be replacedvhich are spurious. The difficulty arises because the

by a QR decomposition ifn is larger than 5 or sp. Eckmann-Ruelle matrix in a 5-dimensional embedding is not
Step 4. Sek—k+1. If k<N then go to step 1. the tangent map of the underlying dynamical system, even
though it consistent with the dynamics. The spurious expo-
The jth Lyapunov exponent is estimated as nents arise as part of a deterministic prodds¥. (The Ap-
N pendix describes a heuristic method that avoids, or at least
)\:i S loga(i) (13) minimizes, the computation of spurious exponents, but the
' N& I point here is that no probability model accounts for the ap-

pearance of spurious Lyapunov exponents in time series em-

The a’s are theone-stegexpansion rates; i.ex;(K) is the  beddings).
local expansion rate aj along the subspace spanned by the Systematic errors in local estimates of the dynamics also
ith Lyapunov vector. Some of the initial one-step expansiorarise from the natural measure of the attractor. Some regions
rates may be omitted to allow transients to decay; in thabf the attractor may be so sparsely populated that it is im-
case, the sum in Eq13) runs from an appropriatd, to N, possible to obtain enough observations in a given neighbor-
and the factor N is replaced by 1{—Ng+1). Sometimes hood to compute an Eckmann-Ruelle linearization. If the
the renormalization of the's is done after everp>1 itera-  neighborhood is enlarged to include more points, then non-
tions, in which caséf is replaced by the derivative of the linearities may become significant and E8). may be a poor
p-times iterated ma®fP, and the factor M in Eq. (13) is  approximation to the local dynamics. One can fit a quadratic
replaced by 1M p). When Benettin's algorithm is applied to model instead, but in am-dimensional embedding, a qua-
an embedding, the Eckmann-Ruelle mattix computed at  dratic model requires the estimation of up tm’+m?)/2
X, is used as an approximation Bf(x,) [or of Df?(x,), as  more parameters than for the linear mo®| and their vari-
appropriaté ance is larger than in a linear model. Alternatively, there may

A key question is how to quantify the uncertainty in the be many observations, but due to the strongly volume-
estimates of the Lyapunov exponents using B when  contracting nature of the dynamics, all the manifolds in a
the tangent maps of the underlying dynamical system areeighborhood lie on a low dimensional hyperplane to within
estimated with Eckmann-Ruelle linearizations. Golia andthe observational accuracy. If there are few, if any, observa-
Sandri[28] have suggested a resampling technique to genetions in transverse directions from which to estimate the lo-
ate new time series from an observed one in such a way thagl contraction rate, then the Eckmann-Ruelle linearization
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TABLE |. Lyapunov exponents computed from time series of thed#emap.

Noise Estimated exponent Range u(\)
7n=0 N1=0.632-0.014 [0.594,0.662 0.008
Ao=—2.338:0.050 [—2.504-2.228 0.302
7n=0.005 A1=0.636:0.013 [0.596,0.666 0.016
Ao=—2.619+0.089 [—2.876~-2.444 0.490

may be unreliable. As suggested in Fig. 1, these difficultiegin’s algorithm is used to estimate the Lyapunov exponents
tend to occur in a neighborhood of every point in certainfrom each time serief.e., each exponent is based on a re-
regions of the attractor. constructed attractor consisting of 2000 poinfhe process
These considerations suggest that uncertainties in loca repeated for each of the 100 time series, giving 100 dif-
expansion rates should be regarded as intrinsic errors. F@rent estimates of the Lyapunov exponents. Their mean and
example, consider a map of the forp, ;=ax,modl. The  standard error are reported in the fopnt se in the first two
Lyapunov exponent for almost every initial conditionNs  rows in the second column of the tabl@his procedure is
=loga. In any numerical simulation, roundoff error yields a analogous to that proposed by Golia and SafeBi, except
common uncertainty in the representation of lag and Eq.  that the time series have been obtained by iterating the
(11) applies. Suppose instead thats estimated from data; Henon map from different initial conditionsThe procedure
how might the uncertainty i be quantified? is repeated, except that uniformly distributed random noise is
Bootstrap sampling is one possibility for quantifying the added to each time series to simulate observational noise
uncertainty in local expansion rates, provided that there argith mean zero and variance equal to 0.5% of the variance of
enough observations in a neighborhood to give a reasonabtfe original time series. The mean and standard error of the
approximation to both the natural measure and to the lineatyapunov exponent estimates is reported in the third and
ized dynamics. On each iteration, the Eckmann-Ruelle mafourth rows of the second column in Table (The third
trix Ay, computed from all the observations in a suitablecolumn of Table | gives the range of all 100 estimates.
neighborhood centered &, is substituted forDf(x,) in Finally, for each time series, we generate bootstrap estimates
algorithm B. The matrixA, is used to update the Lyapunov of the uncertainty in the one-step expansion rates as de-
basis at every step. In addition, at each pajntB bootstrap  scribed above. For each time series, we compiiie) and
replicatesA; of A, are generated; steps 2 and 3 of the algo-u(\,), as defined by Eq.14). The fourth column in Table |
rithm are repeated, substitutidg for Ay, to generate boot- shows their average values.
strap replicatesy} (k) of aj(k) for eachj. The bootstrap Th_e “true” v_alues of the_ exponents, based on Benettin's
mean and standard error of eael{k) are computed using algorithm applied to 10 iterations of Eq.(4), are \,
Egs. (1) and (2). (The bootstrap procedure can be used re-=0.6047 bits/iteration and,= —2.342 bits/iteration. The
gardless of whether thé,’s are estimated from ordinary Positive Lyapunov exponent tends to be overestimated from
least squares, total least squares, or some other mgthod. the embedded time series, and the negative exponent is too
If we regard og(a;(k)) as an estimate of the intrinsic Iarg_e(in absolute valupwhen estimated from the noisy time
local error in the expansion rate at tiign point on the tra-  Series; the discrepancies may be due to systematic errors as
jectory, then the analysis leading to H@1) suggests that a described above. However, the uncertainties given by Eq.
bootstrap measure of the uncertainty in thb Lyapunov  (14) for Ay and X, are representative of the range of esti-

exponent associated with the trajectory is mates of the exponents obtained from the different time se-
ries, particularly in the presence of observational ng&H.
1 N Table Il shows estimates of the largest three Lyapunov
u(\)) == > og(a;(k)). (14)  exponents obtained from different time-delay embeddings of
N =1 a laboratory time series from a Belousov-Zhabotinskii

chemical reactiofi32]. The units are bits per 125 time steps

We emphasize that E¢14) is not a confidence interval in (the shortest period of any embedded periodic orbit within
the conventional statistical sense. However, numerical exthe attractor is approximately 125 times the sampling rate
periments suggest that it gives a reasonable assessment of {l88]). Benettin's algorithm has been applied using Eckmann-
range of values ok; that are computed in various cases. Ruelle linearizations from embeddings in three, four, and

Table | shows the Lyapunov exponents computed fronfive dimensions and with time delays of 60, 90, and 120 time
Henon time series as follows. One hundred initial conditionssteps.(The latter time delays give comparable values of the
are chosen at random within the basin of attraction. For eachutual information7], and a graphical analysis of the data
initial condition, the Haon map(4) is iterated to produce a suggests that a three-dimensional embedding space suffices
time series of 2000 valudthe first few iterates are discarded to reconstruct the attractor.
to remove transientsEach time series is embedded in two  The parenthesized values are the uncertainties in each cal-
dimensions using a time-delay embedding. An Eckmanneulation as given by Eq14). The uncertainties in most cases
Ruelle linearization is computed at each point, and Benetare consistent with the range of estimates obtained from the
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TABLE II. Estimates of the three largest Lyapunov exponents from a time series of the Belousov-
Zhabotinskii chemical reaction. Numbers in parentheses are estimates of the uncertainty computed from Eq.

(14).
)N 7=60 7=90 7=120
m=3 N1 1.19(0.3H 1.41(0.40 1.19(0.55
N2 —0.29(0.53 —0.29(0.60 —-0.03(0.73
N3 —6.24(1.80 —-3.53(1.61) —3.68(1.89
m=4 N1 1.04(0.29 0.93(0.39 0.84(0.46
o —0.33(0.30 —0.06(0.449 —0.01(0.59
N3 —2.86(0.76 —2.84(1.00 —1.63(0.88
m=5 N1 0.73(0.19 0.98(0.48 0.91(0.43
o 0.08(0.2H 0.14(0.49 0.16(0.50
N3 —2.34(0.48 —1.36(0.7H —1.23(0.7)

different embedding$34]. The uncertainties i, and A5 ing Lyapunov exponents. There are many sources of system-
are about 25-50% of the estimated value of the correspondgtic error that make it problematic to derive a confidence
ing exponent. This result suggests that Lyapunov exponeniterval for the estimated values of Lyapunov exponents.
computations from embedded flows are subject to a largedowever, if one regards the uncertainties in one-step expan-

inherent uncertainty than those from discrete maps. sion rates as intrinsic error@nuch as one treats roundoff
Although the numerical results above are suggestiveerror in interval analysis then their average value may give
there are several caveats. a useful characterization of the reliability of Lyapunov expo-

(1) The bootstrap estimates of the standard errors of theents computed from a particular time series.
local expansion rates are meaningful only if the underlying
model[e.g., Eq.(3)] is a good approximation of the dynam-
ics at each point. The bootstrap procedure does not account
for systematic errors due to nonlinearities or to artifacts of The author thanks Ying-Cheng Lai and Sharon Lohr for
the embedding. helpful discussions. This work was supported by the Na-

(2) The bootstrap estimates may be unreliable if there argional Science Foundation under grant number ECS-
insufficient data to approximate the natural measure of th@807529.

attractor in a given neighborhood. In general, the bootstrap
method fails if the statistic in question depends sensitively on
the tails of the underlying distributiofsee e.g., Ref{11], APPENDIX

Chap. 7. The computation of spurious Lyapunov exponents can be
(3) The quantityu(\) is not a confidence interval in the minimized if care is taken to prevent overfitting of the
conventional sense. Therefore the usual statistical heuristigsSckmann-Ruelle linearization. The embedding dimension
do not apply. For instance, one cannot conclude that if thenyst be sufficiently large to guarantee the existence of a
estimated value of the largest Lyapunov exponent satisfiegiffeomorphism between the reconstructed attractor and the

A1>3uU(\ ), then the likelihood is greater than 99% that  ynderlying dynamic§1]. However, most of the observations
IS positive. _ _ in a given neighborhood on the reconstructed attractor may
Finally, and most importantly, the arguments leading tojie in a lower dimensional subspace. In such cases, the best

the definition ofu(\) are not rigorous. While the numerical rank+ solution of the least-squares problg should be
results in Tables | and Il are promising, they are not com-gptained for an appropriate<m.

prehensive. More work is needed to determine whether the Eqr this purpose, we form the matrix of observatiotis
use ofu(\) (or some similar quantitycan be justified theo- 35 outlined in Sec. IV and compute its singular value decom-
retically. position[35] to obtain the singular values=s,=---=s,
=0. Ass; is the square root of thigh largest eigenvalue of
Xo"Xo, it provides a measure of the total variance of the
observations along the corresponding eigendirediien the
Estimates of the local dynamics on a reconstructed attradth right singular vector 0X).
tor may be especially sensitive to the measured values of The goal is to determine the value of such that
only a few points, even if many observations are used to fis, .1, . . . .Sy are “negligible.” Givenr, we change coordi-
the model. Bootstrap sampling provides a convenient way tmates and project the observations onto the subspace spanned
identify such influential points. Bootstrap sampling also pro-by the firstr right singular vectors oK,. We fit the model
vides a way to characterize the uncertainty in estimates of3) using least squares to obtain an Eckmann-Ruelle matrix
one-step expansion rates in Benettin's algorithm for computef rankr, then change coordinates backR8.
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One criterion is to regard a singular value as negligible iftimate of the size of the nonlinear terms given the radius of a
it is smaller than the measurement error in each componerypical neighborhood over which the linearization is com-

of X, [36]. Another criterion is to defin&=s?+ - .- +s2,

puted. For example, if the time series consists of measure-

which is a measure of the total variance of the observationgnents that are accurate to seven significant bits, then it is
then select a fractiop, 0<p=1, of the variance to be ex- reasonable to take, sap=0.99. We letr be the smallest
plained by the least-squares procedure for each Eckmaninteger such thats(f+ e +sr2)/V> p. This is the criterion
Ruelle linearization. The choice @fshould be based on an that is used in all of the Eckmann-Ruelle linearizations re-
estimate of the noise level in the observations and/or an egported here.
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